A CHIRAL NITRONATE DIANION FROM D-GLYCERALDEHYDE. ENANTIOSPECIFIC SYNTHESES OF 2,3-DIDEOXY-3-NITRO FURANOSIDES AND PYRANOSIDES

Theresa M. Williams and Harry S. Mosher* Department of Chemistry, Stanford University Stanford, CA 94305

Abstract: A new enantiospecific protocol for the synthesis of 2,3-dideoxy-3nitro and 3-amino sugars is reported. Chiral nitronate dianion 3, derived from $(+)-\underline{D}$ -glyceraldehyde, is allylated and the resulting adduct 7 is transformed to either the methyl furanoside 9 or the methyl pyranoside 10 depending on the reaction sequence.

In a previous reportla we described the synthesis of the methyl ester of racemic nitrotetrahydrofuranoic acid 2, a protected form of the five-carbon acid 1 and a synthon in a projected convergent total synthesis of the potent neurotoxin, tetrodotoxin. However a synthesis of chiral 1 (equivalent to 2 with the 2(R),3(S) configuration) was needed for a projected enantiospecific total synthesis of tetrodotoxinlb.

Scheme |

The readily available acetonide of (+)-D-glyceraldehyde 4 was chosen as a convenient starting point². The synthetic strategy depended upon the establishment of the C(3)-C(4) carbon-carbon bond in 2 using the elegant

(a) NH₂OH·HCl, pyr, 25°C, 12h, 78%; (b) 6 eq. CF₃CO₃H, Na₂HPO₄, CH₃CN, 0°C, 6h, 86%; (c) i. 2.05 eq. n-BuLi(1.5M in hexane), 9:1 THF/HMPA, -78°C, 3h; ii. CH₂=CHCH₂Br, -78°C, 2h; iii. HOAc, -78°C, 68% (1:4.5 <u>syn/anti</u>, 70% conversion); (d) 4:1 HOAc/H₂O, 40°C, 48h, 100%; (e) <u>t</u>-BuPh₂SiCl, imidazole, CH₂Cl₂, 25°C, 30h, 92%; (f) i. O₃, 4:1 CH₂Cl₂/MeOH, pyr, -78°C; ii. Me₂S, -78° to 25°C, 100%; (g) Dowex 50W-X8 (H⁺ form), MeOH, 25°-30°C, 19h, 76%; (h) <u>n</u>-Bu₄NF, THF, 25°C, 2.5h, 68%; (i) RuO₂·3H₂O, NaIO₄, CH₃CN, CCl₄, H₂O, 25°C, 4 h, 87%.

Scheme III

(a) i. O_3 , 4:1 CH₂Cl₂/MeOH. -78^oC; ii. Me₂S, -78^o to 25^oC, 100%; (b) Dowex 50W-X8 (H⁺ form), MeOH, 60^oC, 24h, 61% (3:1 β -pyranoside/ α , β -furanoside); (c) Raney Nickel, 1 atm H₂, MeOH, 25^oC, 4h, 73%; (d) Ac₂O, pyr, CHCl₃, 20h, 55%.

nitronate dianion chemistry developed by Seebach³, using in this case the chiral nitronate dianion **3** (Scheme I). Seebach⁴ has investigated lithiated nitronates similar to **3**. Here we describe the generation and use of dianion **3**, a <u>nucleophilic</u> <u>D</u>-glyceraldehyde-derived synthon, for the synthesis of intermediates **6** and **1** with high diastereoselectivity for the <u>S.S</u> (<u>erythro</u> or <u>anti</u>) isomer **1**. The stereochemistry for nitronate dianion chemistry has been discussed in detail including relevant references.^{3d,4} It is demonstrated that

this is a potentially general protocol for the synthesis of 3-amino-2,3-dideoxy

sugars, which are important as moieties of many antibiotics, <u>e.q.</u>, daunosamine.⁵ The synthesis of **2** is given in Scheme II. 2,3-0-Isopropylidine-Dglyceraldehyde (4)⁶ was converted to a mixture of <u>syn</u>- and <u>anti-</u> oximes⁷ which were oxidized by the method of Emmons and Pagano⁶ to the corresponding nitro compound 5 (bp $62-63^{\circ}C/0.3$ mm; $[\alpha]^{20} - 17^{\circ}$, c 1.13, CHCl₃). Treatment of 5 in 9:1 THF/HMPA at -78° C with 2.05 equiv. of <u>n</u>-BuLi for 3 hours produced dianion 3, which was alkylated with allyl bromide (-78^oC, 2h). Protonation (HOAc, -78^oC) of the resulting nitronate gave the <u>syn</u> and <u>anti</u> nitro aldols **6** and **7** in a ratio of 1:4.5 (capillary GC); the possible factors contributing to diastereoselectivity have been discussed.⁴ The yields for 6 ($[\alpha]_{D}^{20}$ -23°, c 1.13, CHCl₃) and 7 $([\alpha]_{D}^{20}-7.2^{\circ}, c 1.40, CHCl_{3})$ after flash chromatography⁹ were 14% and 54%, respectively, based on recovered 5 (70-85% conversion). The stereochemical assignments in **6** and **7** rest upon the ultimate conversion of **7** to **9a,b.** Ozonolysis of the terminal olefin in 7 gave a guantitative yield of the corresponding aldehyde. Attempts to obtain furanoside **9** by treatment of the aldehyde with acidic methanol, however, were thwarted by concomitant formation of the thermodynamically preferred methyl pyranoside 10. To circumvent this problem, the acetonide group in 7 was removed with aqueous acetic acid, and the resulting diol was selectively protected using t-butyldiphenylsilyl chloride¹⁰ to give 8 ($[\alpha]^{20}$, +0.4°, c 1.78, CHCl₃). Ozonolysis followed by treatment with acidic methanol gave a mixture of methyl furanosides which, after desilylation, afforded the desired alcohol as a mixture of chromatographically separable anomers (**9a**: $[\alpha]_{D}^{20}$ +142°, c 1.06, CH₃OH, J_{3.4}=4.8 Hz; **9b**: $[\alpha]_{D}^{20}$ -104°, c 1.35, CH_3OH , ¹¹ $J_{3,4}=2.9$ Hz). Oxidation of **9a,b** with RuO_4^{12} gave the corresponding carboxylic acids (2a: [α]²⁰_D+155⁰, c 1.05, CH₃OH, J_{3,4}=3.1 Hz; 2b: [α]²⁰_D-86⁰, c 1.31, CH₃OH, J_{3.4}=3.2 Hz).

The stereochemical assignments about the C(3)-C(4) bond of **9a,b**, and **2a,b** (and by inference, the configurations of precursors **6**, **7**, and **8**) are based upon analysis of coupling constants¹³. Chemical evidence for these assignments comes from the conversion of the minor allylation product **6** to the C-3 epimer of **9a**, which upon epimerization with base gives a 5:1 mixture of **9a** ($J_{3,4}$ =4.8 Hz) and the C-3 epimer of **9a** ($J_{3,4}$ =5.7 Hz). The optical rotations of the α - and β -anomers of **2** and **9** are in accord with Hudson's rules¹⁴.

The thermodynamically preferred methyl pyranoside 10 is also readily

6272

available from nitro aldol 7. Thus, the crude aldehyde derived from ozonolysis of 7 was refluxed in methanol with Dowex 50W-X8 (H^+ form) to furnish pyranoside 10 (mp 62-64°C, $[\alpha]^{20}$ p-197°, c 1.34, CHCl₃). Reduction with Raney nickel gave amino alcohol 11 of high purity; acetylation followed by short column chromatography gave analytically pure acetamide 12 (mp 137-138°C; $[\alpha]^{20}$ -219°, c 0.60, CHCl₃).

Acknowledgment: We thank the National Institutes of Health (NIH RO1 NS 14345) for continued support and the National Science Foundation (instrument grant CHE 81-09064) for the Nicolet 300MHz FT-NMR spectrometer used in these studies.

References and Notes

- 1. (a) Williams, T.M.; Crumbie, R.; Mosher, H.S. J. Org. Chem. (1985), 50, 91. (b) Optically pure 2 has been synthesized from D-xylose: Weber, J.F.; Nachman, R.J.; Talhouk, J.W.; Williams, T.M.; Yu. T.-P.; Mosher, H.S., to be published.
- 2. For representative examples of the use of D-qlyceraldehyde in acyclic syntheses of carbohydrates see: McGarvey, G.J.; Masayuki, K.; Taeboem, O.; Williams, J.M. J. Carbohydrate Chem. (1984), 3, 125.
- (a) Seebach, D.; Lehr, F. Angew. Chem. Int. Ed. Eng. (1976), 15, 505. (b) 3. Seebach, D.; Henning, R.; Lehr, F.; Gonnermann, J. <u>Tetrahedron Lett.</u> (1977), 1161. (c) Seebach, D.; Colvin, E.W.; Lehr, F.; Weller, T. Chimia (1979), 33, 1. (d) Seebach, D.; Beck, A.K.; Mukhopadhyay, T.; Thomas, E. Helv. Chim. Acta (1982), 65, 1101.
- 4. Eyer, M.; Seebach, D. J. Am. Chem. Soc. (1985), 107, 3601.
- 5. A nitro-aldol approach to (-)-daunosamine and related amino sugars has been (a) Hanessian, S.; Kloss, K. Tetrahedron Lett. (1985), 26, reported: 1261. (b) Suami, T.; Tadano, K.-i.; Suga, A.; Ueno, Y. <u>J. Carbohydrate</u> <u>Chem</u>, (1984), 3, 429.
- Baer, E.; Fischer, H.O.L. J. Biol. Chem. (1939), 128, 463. 6.
- All new compounds were characterized by ¹H NMR, IR, and elemental analysis. 7.
- Emmons, W.D.; Pagano, A.S. J. Am. Chem. Soc. (1955), 77, 4557. 8.
- 9. Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. (1978), 43, 2923.
- Hanessian, S.; Lavallee, P. <u>Can. J. Chem.</u> (1975), 53, 2975.
 For 9b prepared from <u>D</u>-xylose, [α]²⁰ D^{-102°}, c 1.20, CH₃OH (ref. lb).
- 12. Carlsen, P.H.J.; Katšuki, T.; Martin, V.S.; Sharpless, K.B. J. Org. Chem. (1981), 46, 3936.
- Small vicinal 1 H J values (i.e., <4Hz) in pentofuranose derivatives can be 13. ascribed to trans coupling constants. See: Stevens, J.D.; Fletcher, H.G., (1968), 33, 1799. Jr. <u>J. Org. Chem.</u>
- 14. Hudson, C.S. J. Am. Chem. Soc. (1909), 31, 66.

(Received in USA 16 September 1985)